

Shelf Life of Lidocaine

Rural Scholars 2017/2018 Catia, Kinsey, & Morgan

"two-thirds of the time you'll probably fail" - scott shaw

Lidocaine Background

- Lidocaine is a local anesthetic used to numb tissue
 - Ex) used to numb gums at the dentist office
- A buffer is added to resist major changes in the pH
 - The buffer used is NaHCO3
 - Makes the solution less acidic, which is less painful for patient
- Why:
 - We chose this because all of us are going into dentistry or medical fields and lidocaine related to both of these

Societal Impacts

Cost efficiency for clinics that use lidocaine

- Know more about the shelf-life of normal + buffered lidocaine
 - o Minimize waste
- Know which conditions maximize the shelf life of each solution
- Gain insight on why the efficiency of lidocaine injections changes between patients

Experimental Question

What factors affect the degradation of lidocaine?

- How fast does degradation occur under each factor?
- Which environment is most suitable to maximize the shelf life of lidocaine?

NaHCO₃ Buffer

Lidocaine HCI

Experimental Plan

- Investigating degradation of buffered and unbuffered lidocaine
 - Concentration of lidocaine and epinephrine in solution have been shown to decrease significantly after one week
- Testing in presence of different factors
 - o Light
 - o Dark
 - o Cold
 - o Heat
 - o Control groups
- Determine what environments affect how long buffered and unbuffered lidocaine lasts

Dark vs Light

Expected Outcomes

 We predict that the solutions placed in the dark and cold will have the longest shelf life, as compared to those placed in heat or light, which should degrade faster.

- Unfamiliar unit conversions
 - Medical units (mEq milliequivalent units)

• Inexperience in lab devices

- Infrared
- o NMR
- o Mass Spectrometry
- Time constraints
- Insolubility of lidocaine and buffer
 - o NaHCO3 needed more water to dissolve fully
 - Need to recheck calculations
 - o 3 different solutions were made-all were insoluble

Solubility of Sodium Bicarbonate

- Sodium bicarbonate is a salt that is normally very dissolvable in water
- We used 4.2 grams NaHCO3 (8.4%)
- Prediction:
 - First we must dilute the Sodium Bicarbonate so it is8.4% when mixed with water
 - This diluted version must then be added to the Lidocaine Epinephrine solution in a 1:10 ratio
 - 5 mL diluted Sodium Bicarbonate with 45 mL
 Lidocaine Epinephrine solution
- Changed experiment plan did not work for us

Mechanisms

NMR - Nuclear Magnetic Resonance

- NMR is used to determine <u>physical and chemical</u> <u>properties</u> of molecules
 - Can show us where hydrogen groups or carbon groups are located in relation to each other
 - Shows the proton environment

IR Spectroscopy - Infrared Spectroscopy

- IR uses infrared light to determine the <u>functional</u> <u>groups</u> present in a molecule
 - Measured onto a graph of absorbance vs wavenumber
 - Each peak at a wavenumber range corresponds to different functional groups
- Helps us see structure of samples

Together we can use NMR and IR Spectroscopy to determine the structure of the lidocaine samples

Mass Spectrometry (MS)

- Sorts ions by mass-to-charge ratio
- Uses electromagnetic fields
- We use it to compare the weight of our standard solution of lidocaine to the samples of lidocaine that were sitting for 2 months
- We didn't actually do this

Data

Obtained using IR, MS, and NMR

Spectra for IR Spectroscopy

IR Spectroscopy of Sodium Bicarbonate (buffer) and Lidocaine HCl w/ Epinephrine.

- IR spectrum has peaks representing amount of light transmitted & is used to determine functional groups in molecules
- Carbon Dioxide and C=O bonds are the cause of some of the peaks

1870-1540 cm ⁻¹									
1818 1750	strong	C=0	stretching	anhydride					
1740-1720	strong	C=O	stretching	aldehyde					
1730-1715	strong	C=O	stretching	α,β -unsaturated ester	or formates				
1725-1705	strong	C=O	stretching	aliphatic ketone	or cyclohexanone or cyclopentenone				
1720-1706	strong	C=O	stretching	carboxylic acid	dimer				
1710-1680	strong	C=O	stretching	conjugated acid	dimer				
1710-1685	strong	C=O	stretching	conjugated aldehyde					
1690	strong	C=O	stretching	primary amide	free (associated: 1650)				
1400-1000 cm ⁻¹									
1440-1395	medium	0-H	bending	carboxylic acid					
1420-1330	medium	O-H	bending	alcohol					

Libretexts. "Infrared Spectroscopy Absorption Table." Chemistry LibreTexts, Libretexts, 21 July 2016. Accessed on 4/5/18.

NMR Spectra for Standard Solution

Integral Intensity Gives us the number of hydrogen atoms in each region of the molecule

We conducted ran NMR tests on two tubes of each of the different lidocaine sample in the different environments.

Quantitation: Internal Standard Method

$$I.I_{ox} \propto n_{ox}$$

$$I.I_{ox} \propto M_{ox}$$

$$I.I_{ox} \propto M_{ox}$$

$$I.I_{ox} \propto M_{ox}$$

$$I.I_{ox} \approx M_{ox}$$

$$I.I_{ox} = K_{s}M_{ox}n_{ox} \frac{V_{gas}}{V_{tot}}$$

$$I.I_{ox} = Integrated intensity of a group of resonances due to the oxygenate K_{s} -Spectrometer constant$$

$$I.I_{ox} = K_{s}M_{ox}n_{ox} \frac{V_{gas}}{V_{tot}}$$

$$I.I_{ox} = Integrated intensity of a group of resonances due to the oxygenate V_{s} = -Integrated intensity of a group of resonances due to the oxygenate V_{s} = -Integrated intensity of a group of resonances due to the oxygenate V_{s} = -Integrated intensity of a group of resonances due to the oxygenate V_{s} = -Integrated intensity of a group of resonances due to the oxygenate V_{s} = -Integrated intensity of a group of resonances due to the oxygenate V_{s} = -Integrated intensity of a group of resonances due to the oxygenate V_{s} = -Integrated intensity of a group of resonances due to the oxygenate V_{s} = -Integrated intensity of a group of resonances due to the oxygenate V_{s} = -Integrated intensity of a group of resonances due to the oxygenate V_{s} = -Integrated intensity of a group of resonances due to the oxygenate V_{s} = -Integrated intensity of a group of resonances due to the oxygenate V_{s} = -Integrated intensity of a group of resonances due to the oxygenate V_{s} = -Integrated intensity of a group of resonances due to the oxygenate V_{s} = -Integrated intensity of a group of resonances due to the oxygenate V_{s} = -Integrated intensity of a group of resonances due to the oxygenate V_{s} = -Integrated intensity of a group of resonances due to the oxygenate V_{s} = -Integrated intensity of a group of resonances due to the oxygenate V_{s} = -Integrated intensity of a group of resonances due to the oxygenate V_{s} = -Integrated intensity of a group of resonances due to the oxygenate V_{s} = -Integrated intensity of a group of resonances due to the oxygenate V_{s} = -Integrated intensity of a group of resonances due to the oxygenate V_{s} = -Integrated intensity of a group of resonances due$$

The integrated intensity ratio of the oxygenate to the internal standard is then:

$$\frac{I.I_{\text{ox}}}{I.I_{\text{DMO}}} = \frac{\mathcal{K}_{\text{s}} n_{\text{ox}} M_{\text{ox}} (V_{\text{gas}} / V_{\text{tot}})}{\mathcal{K}_{\text{s}} n_{\text{DMO}} M_{\text{DMO}}} \dots [2] \quad M_{\text{DMO}} \text{- Molar concentration of DMO in the NMR sample}$$

Rearranging equation [2]

$$M_{\rm ox} = \frac{I.I_{\rm ox}}{I.I_{\rm DMO}} \frac{n_{\rm DMO}}{n_{\rm ox}} M_{\rm DMO} \frac{V_{\rm tot}}{V_{\rm gas}} \qquad \dots \dots [3]$$

1

Nuclear Magnetic Resonance (NMR)

	I.I DMO	I.I ox	n DMO	n ox	M DMO	V total	V gas	M ox (final concentration)	average M ox
3 - Control 1A	1	-12.43	9	6	0.00137	670	70	-0.24378	
4 - Control 1B	1	2.610	9	6	0.00130	670	70	0.04871	0.04871
5 - Control 2A	1	2.480	9	6	0.00109	670	70	0.03892	
6 - Control 2B	1	1.150	9	6	0.00287	670	70	0.04739	0.04315
7 - Cold A	1	2.910	9	6	0.00116	670	70	0.04851	
8- Cold B	1	2.000	9	6	0.00130	670	70	0.03733	0.04292
9 - Light A	1	4.270	9	6	0.00123	670	70	0.07534	
10- Light B	1	3.930	9	6	0.00157	670	70	0.08870	0.08202
11-Dark A	1	2.140	9	6	0.00170	670	70	0.05235	
12-Dark B	1	1.910	9	6	0.00226	670	70	0.06186	0.05711
13-High Temp A	1	3.870	9	6	0.00157	670	70	0.08734	
14-High Temp B	1	3.150	9	6	0.00171	670	70	0.07729	0.08232

• Original concentration of Lidocaine was 85 mM = 0.085 M

Mass Spectrometry Data

Compound 1: Lidocaine												
												start at 0.085 M
	Name	Sample Text	Туре	Std. Conc	RT	Area	Response	ng/ul	%Dev	S/N	Conc Before Dilutions (ng/uL)	Conc in mol/L
1	T04261812	0.147 ng/ul	Standard	0.147	2.02	15651	15651.02	0.14	-7.3	7161.039		
2	T04261813	0.293 ng/ul	Standard	0.293	2.02	21433	21433.43	0.31	4.8	10546.983		
3	T04261814	0.588 ng/ul	Standard	0.588	1.99	32058	32057.654	0.62	5.5	17234.482		
4	T04261815	1.175 ng/ul	Standard	1.175	1.99	49626	49626.387	1.14	-3.1	23387.758		
5	T04261818	water	Blank									
6	T04261819	Control	Analyte	0.2772286614	2.02	20425	20424.912	0.28		9118.418	2772.286614	0.01023735737
7	T04261820	Low temp	Analyte	0.253367246	2.02	19616	19616.461	0.25		8097.082	2533.67246	0.009356215304
8	T04261821	Hight temp	Analyte	0.2800052537	1.99	20519	20518.986	0.28		10131.689	2800.052537	0.01033988994
9	T04261822	Light	Analyte	0.2273254115	2.02	18734	18734.135	0.23		9809.8	2273.254115	0.008394555836
10	T04261823	Dark	Analyte	0.2401462762	2.02	19169	19168.52	0.24		8082.41	2401.462762	0.008867998133
11	T04261824	Control 2	Analyte	0.1723776678	2.02	16872	16872.445	0.17		9081.951	1723.776678	0.006365473827
12	T04261825	water	Blank									

• Original concentration of Lidocaine was 85 mM = 0.085 M

Results

- Never finished buffered solution
- Cold and dark samples degraded the most
 - Based on the data from NMR and MS
 - Final concentrations were the lowest
 - We don't know why
- Coming back in the fall for more research