Shelf Life of Lidocaine

Rural Scholars 2017/2018
Catia, Kinsey, & Morgan
“two-thirds of the time you’ll probably fail” - Scott Shaw
Lidocaine Background

- Lidocaine is a local anesthetic used to numb tissue
 - Ex) used to numb gums at the dentist office
- A buffer is added to resist major changes in the pH
 - The buffer used is NaHCO₃
 - Makes the solution less acidic, which is less painful for patient
- Why:
 - We chose this because all of us are going into dentistry or medical fields and lidocaine related to both of these
Societal Impacts

Cost efficiency for clinics that use lidocaine

- Know more about the shelf-life of normal + buffered lidocaine
 - Minimize waste
- Know which conditions maximize the shelf life of each solution
- Gain insight on why the efficiency of lidocaine injections changes between patients
Experimental Question

What factors affect the degradation of lidocaine?

- How fast does degradation occur under each factor?
- Which environment is most suitable to maximize the shelf life of lidocaine?
Experimental Plan

● Investigating degradation of buffered and unbuffered lidocaine
 ○ Concentration of lidocaine and epinephrine in solution have been shown to decrease significantly after one week

● Testing in presence of different factors
 ○ Light
 ○ Dark
 ○ Cold
 ○ Heat
 ○ Control groups

● Determine what environments affect how long buffered and unbuffered lidocaine lasts
Controls

Cold vs Heat

Dark vs Light
Expected Outcomes

- We predict that the solutions placed in the dark and cold will have the longest shelf life, as compared to those placed in heat or light, which should degrade faster.
Challenges

- Unfamiliar unit conversions
 - Medical units (mEq - milliequivalent units)
- Inexperience in lab devices
 - Infrared
 - NMR
 - Mass Spectrometry
- Time constraints
- Insolubility of lidocaine and buffer
 - NaHCO$_3$ needed more water to dissolve fully
 - Need to recheck calculations
 - 3 different solutions were made—all were insoluble
Solubility of Sodium Bicarbonate

- Sodium bicarbonate is a salt that is normally very dissolvable in water
- We used 4.2 grams NaHCO3 (8.4%)
- Prediction:
 - First we must dilute the Sodium Bicarbonate so it is 8.4% when mixed with water
 - This diluted version must then be added to the Lidocaine Epinephrine solution in a 1:10 ratio
 - 5 mL diluted Sodium Bicarbonate with 45 mL Lidocaine Epinephrine solution
- Changed experiment plan - did not work for us
Mechanisms

NMR - Nuclear Magnetic Resonance
- NMR is used to determine physical and chemical properties of molecules
 - Can show us where hydrogen groups or carbon groups are located in relation to each other
 - Shows the proton environment

IR Spectroscopy - Infrared Spectroscopy
- IR uses infrared light to determine the functional groups present in a molecule
 - Measured onto a graph of absorbance vs wavenumber
 - Each peak at a wavenumber range corresponds to different functional groups
- Helps us see structure of samples

Together we can use NMR and IR Spectroscopy to determine the structure of the lidocaine samples
Mass Spectrometry (MS)

- Sorts ions by mass-to-charge ratio
- Uses electromagnetic fields
- We use it to compare the weight of our standard solution of lidocaine to the samples of lidocaine that were sitting for 2 months
- We didn’t actually do this
Data

Obtained using IR, MS, and NMR
Spectra for IR Spectroscopy

IR Spectroscopy of Sodium Bicarbonate (buffer) and Lidocaine HCl w/ Epinephrine.

- IR spectrum has peaks representing amount of light transmitted & is used to determine functional groups in molecules.
- Carbon Dioxide and C=O bonds are the cause of some of the peaks.

Carboxylic Acid Group

C=O group

NMR Spectra for Standard Solution

Integral Intensity
Gives us the number of hydrogen atoms in each region of the molecule

3-(Trimethylsilyl)-1-propanesulfonic acid sodium salt
(Mol. Weight, 218.32)

Lidocaine HCl
We conducted NMR tests on two tubes of each of the different lidocaine sample in the different environments.
Quantitation: Internal Standard Method

\[l.I_{ox} \propto n_{ox} \]
\[l.I_{ox} \propto M_{ox} \]
\[l.I_{ox} = K_s M_{ox} n_{ox} \frac{V_{gas}}{V_{tot}} \quad \ldots..[1] \]

\[l.I_{ox} \] - Integrated intensity of a group of resonances due to the oxygenate
\[K_s \] - Spectrometer constant
\[n_{ox} \] - Number of protons generating the signal
\[V_{gas} = 100\mu l \]
\[V_{tot} = 600\mu l \]
\[M_{ox} \] - Molar concentration of oxygenate

The integrated intensity ratio of the oxygenate to the internal standard is then:
\[\frac{l.I_{ox}}{l.I_{DMO}} = \frac{K_s n_{ox} M_{ox} (V_{gas}/V_{tot})}{K_s n_{DMO} M_{DMO}} \quad \ldots..[2] \]

\[M_{DMO} \] - Molar concentration of DMO in the NMR sample

Rearranging equation [2]

\[M_{ox} = \frac{l.I_{ox}}{l.I_{DMO}} \frac{n_{DMO}}{n_{ox}} M_{DMO} \frac{V_{tot}}{V_{gas}} \quad \ldots..[3] \]
Nuclear Magnetic Resonance (NMR)

- Original concentration of Lidocaine was 85 mM = 0.085 M
Mass Spectrometry Data

<table>
<thead>
<tr>
<th>Name</th>
<th>Sample Text</th>
<th>Type</th>
<th>Std. Conc</th>
<th>RT</th>
<th>Area</th>
<th>Response</th>
<th>ng/ul</th>
<th>%Dev</th>
<th>S/N</th>
<th>Conc Before Dilutions (ng/ul)</th>
<th>Conc in mol/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>T04261812</td>
<td>0.147 ng/ul</td>
<td>Standard</td>
<td>0.147</td>
<td>2.02</td>
<td>15651</td>
<td>15651.02</td>
<td>0.14</td>
<td>-7.3</td>
<td>7161.039</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T04261813</td>
<td>0.293 ng/ul</td>
<td>Standard</td>
<td>0.293</td>
<td>2.02</td>
<td>21433</td>
<td>21433.43</td>
<td>0.31</td>
<td>4.8</td>
<td>10546.983</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T04261814</td>
<td>0.588 ng/ul</td>
<td>Standard</td>
<td>0.588</td>
<td>1.99</td>
<td>32058</td>
<td>32057.654</td>
<td>0.62</td>
<td>5.5</td>
<td>17234.482</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T04261815</td>
<td>1.175 ng/ul</td>
<td>Standard</td>
<td>1.175</td>
<td>1.99</td>
<td>49626</td>
<td>49626.387</td>
<td>1.14</td>
<td>-3.1</td>
<td>23387.758</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T04261818</td>
<td>water</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T04261819</td>
<td>Control</td>
<td>Analyte</td>
<td>0.2772286614</td>
<td>2.02</td>
<td>20425</td>
<td>20424.912</td>
<td>0.28</td>
<td></td>
<td>9118.418</td>
<td>0.01023735737</td>
<td></td>
</tr>
<tr>
<td>T04261820</td>
<td>Low temp</td>
<td>Analyte</td>
<td>0.253367246</td>
<td>2.02</td>
<td>19616</td>
<td>19616.461</td>
<td>0.25</td>
<td></td>
<td>8097.082</td>
<td>0.009356215304</td>
<td></td>
</tr>
<tr>
<td>T04261821</td>
<td>High temp</td>
<td>Analyte</td>
<td>0.2800052537</td>
<td>1.99</td>
<td>20519</td>
<td>20518.986</td>
<td>0.28</td>
<td></td>
<td>10131.689</td>
<td>0.01033988994</td>
<td></td>
</tr>
<tr>
<td>T04261822</td>
<td>Light</td>
<td>Analyte</td>
<td>0.2273254115</td>
<td>2.02</td>
<td>18734</td>
<td>18734.135</td>
<td>0.23</td>
<td></td>
<td>9809.8</td>
<td>0.008394555836</td>
<td></td>
</tr>
<tr>
<td>T04261823</td>
<td>Dark</td>
<td>Analyte</td>
<td>0.2401462762</td>
<td>2.02</td>
<td>19169</td>
<td>19168.52</td>
<td>0.24</td>
<td></td>
<td>8082.41</td>
<td>0.008867998133</td>
<td></td>
</tr>
<tr>
<td>T04261824</td>
<td>Control 2</td>
<td>Analyte</td>
<td>0.1723776678</td>
<td>2.02</td>
<td>16872</td>
<td>16872.445</td>
<td>0.17</td>
<td></td>
<td>9081.951</td>
<td>0.006365473827</td>
<td></td>
</tr>
<tr>
<td>T04261825</td>
<td>water</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Original concentration of Lidocaine was 85 mM = 0.085 M
Results

● Never finished buffered solution
● Cold and dark samples degraded the most
 ○ Based on the data from NMR and MS
 ○ Final concentrations were the lowest
 ○ We don’t know why
● Coming back in the fall for more research