

How to: Contact Angle

Samantha Nania Shaw Group Meeting 141124

Sample/Fluid Preparation

- Prepare surface
 - Mechanically and chemically polish
 - Electrochemically roughen
 - Put in SAM at least 24 hrs before (optional)
- Prepare Fluid
 - If using fluid which isn't of water, make sure to have FRESH fluid in sealed vial
 - Any water in solvents may affect contact angle

Instrument Preparation

- Turn on light
 - Found that having the light a little dimmer allows for easier readings later
- Take cap off camera
- Turn on automated fluid dispenser
 - 20 uL at the slowest speed

Fluid Preparation

- Load tip into fluid dispenser
 - Want the 3 spaces facing the back side of the dispenser
 - Push up until it clicks in
- Press red reset button
- Load fluid
 - Hold vial up so the tip is dipped into fluid
 - Press green up arrow

Tip and Sample Adjustments

Tightening knob – to adjust level of dispenser

Tightening knob to adjust height of sample

Software Preparation

- On the desktop, Click camera icon
 - Choose monochromatic option

- Once opened press Play button in top left
- May want to decrease ratio to 1:2 so entire picture can be seen

Focus Adjustments

 Make sure the two lens adjustments are turned all the way to the left to ensure farthest sample

- This allows the whole sample to be in the shot

• Adjust any other focus using the rolling knob

Taking Contact Angle Video

- Press reel in the top bar
- Box (left) will pop up
 - Need to create file before recording
- Box (right) allows you to record and stop
- Dispense liquid using orange down arrow on dispenser
- Press stop and then close to end the video
- Need to then PrtSc separate images
 - Save as JPEG

	Dialog		Ľ
VI Recording			
=ile			
Max. Frames	1	Received	1366
Maximal (MB)	4096	Dropped	0
Current [MB]	79.00	Saved	1366
🔽 Calc. Framerate	0.00]	
JPEG Quality ,			75
1		100	

Recording			
e E:\	Contact Angle Gr	oup Data (Nania \141124)	no name.avi
Max. Frames	1	Received	0
Maximal [MB]	4096	Dropped	0
Current [MB]	0.00	Saved	0
Calc. Framerate	0]	
EG Quality			75
1		100	

Background Contact Angle Analysis

Hydrophobic

Hydrophilic

$$\gamma^{sv} = \gamma^{sl} + \gamma^{lv} \cos \theta$$

- heta : Contact Angle
- γ^{sl} : Solid/liquid interfacial free energy
- γ^{sv} : Solid surface free energy γ^{lv} : Liquid surface free energy

Background Contact Angle Analysis

 Need to be careful because the capillary dispenser may cause deformation of the geometry

Contact Angle Analysis: ImageJ

Contact Angle Analysis

- Need to get images of advancing, static, and receding contact angles
- Need to measure both left and right of each image
 - This allows for more data points

Advancing

Static

Receding

Contact Angle Analysis

- Once all data is collected
 - Combined left and right measures with each different droplet

$$Avg: \frac{a_1 + a_2 + \dots + a_n}{n} \qquad StDev: \sqrt{\frac{(a_1 - a)^2 + (a_2 - a)^2 + \dots + (a_n - a)^2}{n}}$$

$$Pooled \quad StDev: \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2 + \dots + (n_k - 1)s_k^2}{n_1 + n_2 + \dots + n_k - k}}$$

 Ag3
 Ag4

 Average
 Ag3 StDev Average
 Ag4 StDev

 Advancing
 43.48
 1.427703
 51.57
 0.356955

 Receding
 23.85333
 1.709616
 35.01667
 1.071871

 Static
 42.78167
 1.127642
 50.80667
 0.223308

Ag-Hexanethiol	Smooth Chlorobenzene Advancin			Smooth o-Dichlorobenzene Advancin		
	g	Receding	Static	g	Receding	Static
Pooled Average	43.48	23.85	42.78	51.57	35.02	50.81
Pooled StDev	1.43	1.71	1.13	0.36	1.07	0.22